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Fluorescence lifetime imaging (FLI) provides unique quantitative
information in biomedical and molecular biology studies but relies
on complex data-fitting techniques to derive the quantities of
interest. Herein, we propose a fit-free approach in FLI image forma-
tion that is based on deep learning (DL) to quantify fluorescence
decays simultaneously over a whole image and at fast speeds. We
report on a deep neural network (DNN) architecture, named fluo-
rescence lifetime imaging network (FLI-Net) that is designed and
trained for different classes of experiments, including visible FLI
and near-infrared (NIR) FLI microscopy (FLIM) and NIR gated macro-
scopy FLI (MFLI). FLI-Net outputs quantitatively the spatially re-
solved lifetime-based parameters that are typically employed in
the field. We validate the utility of the FLI-Net framework by per-
forming quantitative microscopic and preclinical lifetime-based
studies across the visible and NIR spectra, as well as across the 2
main data acquisition technologies. These results demonstrate
that FLI-Net is well suited to accurately quantify complex fluores-
cence lifetimes in cells and, in real time, in intact animals without
any parameter settings. Hence, FLI-Net paves the way to reproduc-
ible and quantitative lifetime studies at unprecedented speeds, for
improved dissemination and impact of FLI in many important bio-
medical applications ranging from fundamental discoveries in mo-
lecular and cellular biology to clinical translation.

fluorescence lifetime | deep learning | analytic optimization |
pharmacokinetics | simulation

Molecular imaging has become an indispensable tool in
biomedical studies with great impact on numerous fields

from fundamental biological investigations to transforming clinical
practice. Among all molecular imaging modalities, fluorescence
optical imaging is a central technique due to its high sensitivity; the
numerous molecular probes available, either endogenous or ex-
ogenous; and its ability to simultaneously image multiple bio-
markers or biological processes at diverse spatiotemporal scales
(1, 2). Especially, fluorescence lifetime imaging (FLI) has become
an increasingly popular method as it provides unique insights into
the cellular microenvironment via analysis of various intracellular
parameters (3), such as metabolic state (4), reactive oxygen species
(5), and intracellular pH (6). Moreover, FLI’s exploitation of
native fluorescent signatures has been extensively investigated for
enhanced diagnostics of frequent pathologies (7–10). Additionally,
FLI is one of the most accurate approaches to quantify Förster
resonance energy transfer (FRET), an invaluable technique to
perform nanoscale proximity assays in many biosensing and bio-
analysis applications (11). FLI FRET is a powerful technique for
studying molecular interactions inside living samples, including
applications such as quantifying protein–protein interactions, mon-
itoring biosensor activity (12), and ligand–receptor engagement
in vivo (13). However, despite its popularity and profound impact,
FLI is not a direct imaging modality and datasets need to be
postprocessed to quantify fluorescence lifetime or lifetime-based
parameters. Such postprocessing typically involves a model-based
process in which iterative optimization methods are employed to es-
timate the different parameters of interest (lifetime, FRET efficiency

[E%], or population fractions). Mono- or biexponential models,
depending on the application at hand, are the most widely
employed to analyze FLI datasets. Yet, it is notorious that the
accuracy of these methods is often associated with guess pa-
rameter settings employed to constrain the inverse problem.
These methods are also relatively slow and/or computationally
expensive (14). This complexity together with a lack of stan-
dardized methodologies has limited the widespread use and
impact of FLI, especially clinically. Recently, a fit-free lifetime
quantification methodology has been proposed, the phasor ap-
proach (15). The phasor method is a graphical representation of
excited-state fluorescence lifetimes. Adoption of the phasor
technique has been increasing due to its simplicity that allows
nonimaging experts to perform simple and fit-free analyses of the
information contained in the many thousands of pixels consti-
tuting an image (16). Furthermore, the phasor formulation is
independent of the sample and hence allows for the identifica-
tion of fluorescent species that may not have been accounted for
in a particular study’s imaging protocol. However, although the
phasor method provides a graphical interface that simplifies FLI
data interpretation, the mathematics underlying its computation
can be challenging, its user-friendly interface requires some level
of proficiency for accurate quantification (17), the approach may
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need to be modified for techniques such as time-gated fluores-
cence (18), and it requires calibration samples with known life-
time value to be quantitative (19).
In parallel, interests in data-driven and model-free processing

of imaging methodologies have boomed over the last decade. Of
particular note, machine-learning (ML) and deep-learning (DL)
methods have recently profoundly impacted the image-processing
field. For example, deep neural networks (DNNs) are currently
providing high-level, robust performances in numerous bio-
medical applications—such as in pathology through multiple-
imaging modalities (20–22), natural language processing (23),
image reconstruction via direct mapping from the sensor-image
domain (24), and reinforcement learning applied to drug discovery
(25). DL methods are increasingly employed in molecular optical
imaging applications from resolution enhancement in histopa-
thology (26), superresolution microscopy (27), fluorescence signal
prediction from label-free images (28), single-molecule localization
(29), fluorescence microscopy image restoration (30), and hyper-
spectral single-pixel lifetime imaging (31). However, the typical
application of DL methods to image processing is data driven and
hence requires large training datasets that are difficult to acquire
and/or not readily available.
Herein, we present a 3D convolutional neural network (CNN)

architecture named fluorescence lifetime imaging network (FLI-
Net) that is designed to process the typical datasets acquired by
current fluorescence imaging systems. FLI-Net provides, at fast
speeds, lifetime maps as well as associated quantities (i.e., life-
time species, E%, or fractional amplitude of lifetime compo-
nents, such as FRET donor fraction [FD%]). To date, this 3D
CNN methodology is trained to reconstruct mono- and biexpo-
nential FLI for each typical class of experiments encountered in
the field, including in vitro FLI microscopy (FLIM) in cultured
cells in the near-infrared (NIR) and visible range as well as
in vivo NIR macroscopic FLI (MFLI) in live intact mice. For
each of these cases, the data used in the training datasets were
simulated over wide lifetime bounds encompassing those present
in the application of interest. Furthermore, the 3D CNN is
trained efficiently using a synthetic data generator to achieve
state-of-the-art FLI reconstruction with experimental datasets
not used during training—avoiding the need to acquire massive
training datasets experimentally. Of importance, FLI-Net does
not require the selection of any direct guess or user-defined
parameters posttraining. FLI-Net is accurate over a large range
of lifetimes (including those close to the instrument response)
and has the potential to provide superior performances in
photon-starved conditions. In addition, this 3D CNN is capable
of processing experimental fluorescent decays acquired by either
time-correlated single-photon counting (TCSCP)-based (FLIM
datasets) or gated intensity charged-coupled device (ICCD)-
based (MFLI datasets) instruments, which are 2 of the main FLI-
based technologies employed in the field. Herein, the potential
of FLI-Net is demonstrated by performing visible FLIM to
quantify the metabolic status of live cells as well as reporting
FRET to measure levels of receptor engagement across the
visible and NIR spectra using FLIM and MFLI—covering the
full range of lifetimes encountered in most current applications.
In all cases, the 3D CNN performances are benchmarked against
the widely used FLIM processing software SPCImage (32). Fi-
nally, we demonstrate the potential of the 3D CNN to quantify
whole-body dynamic lifetime-based FRET occurrence in a live
intact animal at unprecedented frame rates (≅80 ms per full
whole-body image). Overall, these results demonstrate that DL
methodologies, beyond classical image-processing tasks, are well
suited for image formation paradigms that to date were based on
inverse problem solvers. FLI-Net provides a versatile tool for fit-
free analysis of complex mono- and biexponential FLI imaging
processes. Due to its ease of use and fast employability, this 3D CNN
should further stimulate the widespread use of FLI techniques,

provide standardized quantification capabilities (as no parameter
settings are required posttraining), and enable applications such as
high-throughput FRET-based biosensor studies as well as real-time
wide-field FLI in preclinical and clinical settings for drug screening
and optical guided surgery, respectively.

FLI-Net Architecture, Training, and Validation
The 3D CNN FLI-Net is designed to mimic a curve-fitting ap-
proach using layers of convolutional operations and nonlinear
activation functions. FLI-Net is devised such that time-resolved
and spatially resolved fluorescence decays are input as a 3D data
cube (x, y, t) and biexponential parameters (2 lifetimes, τ1 and τ2,
and 1 fractional amplitude, AR) are independently estimated at
each pixel to be provided in output images of the same di-
mension as the input (x, y). A rendering of the architecture of
FLI-Net is provided in Fig. 1A. The network architecture consists
of 2 main parts: 1) a shared branch for temporal feature ex-
traction and 2) a subsequent 3-junction split into separate
branches for simultaneous reconstruction of short lifetime (τ1),
long lifetime (τ2), and fractional amplitude of the short lifetime
(AR). Several design choices are critical to the performance of
FLI-Net, providing the basis for a high level of sensitivity, sta-
bility, speed, and reconstruction accuracy. First, it is crucial to
introduce 3D convolutions (Conv3D) along the temporal di-
mension at each spatially located pixel at the first layer to
maximize spatially independent feature extraction along each
temporal point spread function (TPSF). The use of a Conv3D
layer with kernel size of (1 × 1 × 10) mitigates the potential in-
troduction of unwanted artifacts dependent on neighboring pixel
information in the spatial dimensions (x and y) during training
and inference. After this step, a residual block (ResBlock) of
reduced kernel length is employed. This second step enables
further extraction of temporal information while reaping the
benefits obtained through residual learning (elimination of van-
ishing gradients, no overall increase in computational complexity
or parameter count, etc.) (33). The beneficial implementation of
residual learning has been thoroughly documented in image
classification and segmentation (34) as well as in areas of speech
recognition (35). Fully convolutional networks (36), or networks
designed such that input of any spatial dimensionality can be an-
alyzed with no loss in performance, offer enormous benefit to
problems where 1) prior knowledge of input size is inherently
variable and 2) the experimental data of interest are memory
exhaustive. After performing the common features of the whole
input, the network splits into 3 dedicated fully convolutional
branches to estimate the individual lifetime-based parameters of
interest, i.e., short lifetime (τ1), long lifetime (τ2), and fractional
amplitude of the short lifetime (AR). In each of these branches, a
sequence of convolutions is employed for down-sampling to the
intended 2D image. A more detailed description of the network
architecture (SI Appendix, Fig. S1) is provided in Materials and
Methods and SI Appendix, SI Text.
To obtain large datasets to train FLI-Net and ensure its ar-

chitecture robustness and feature extraction efficiency as well as
establish its quantitative accuracy, 10,000 TPSF voxels were
generated. Each voxel was simulated using the modified Na-
tional Institute of Standards and Technology (MNIST) database
to obtain spatial maps of 28 × 28 pixels and subsequently gen-
erate fluorescence decays (notated ΓðtÞ) at each nonzero pixel
location using a biexponential model convolved with an
experimental instrument response function (IRF) illustrated
in Eq. 1:

ΓðtÞ= IRFðtÞ p
h
ARe−t=τ1 + ð1–ARÞe−t=τ2

i
. [1]

Hence, the data inputs were of dimension 28 × 28 × t (SI Ap-
pendix, Fig. S2). Data were generated per class of experiments
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investigated herein: visible FLIM, NIR FLIM, NIR MFLI, and
NIR MFLI FRET. To do so, the parameters of the biexponential
model were varied over the lifetime range typically encountered
in the field, including our specific experiments (visible (τ1, τ2) ∈
[0.2 to 3] ns; NIR (τ1, τ2) ∈ [0.2 to 1.1] ns), and the fractional
amplitude AR varied from 0 to 100% (AR = 0 or 100% corre-
sponds to monoexponential decays whereas every value between
these extremes corresponds to biexponential decays). SI Appen-
dix, Table S1 provides a full summary of the parameters used for
training. The IRF was either generated using SPCImage in the
case of FLIM data or experimentally acquired in the case of
MFLI data. Finally, the photon counts (p.c.) of the maximum
of the TPSF were set between either 250 or 500 (for FLIM or
MFLI, respectively (SI Appendix, Table S1), and 2,000 counts
followed by the addition of Poisson noise. Examples of TPSFs
for FLIM or MFLI are provided in SI Appendix, Fig. S3. The
training dataset was split into training (8,000) and validation
(2,000) datasets. Additional information on the generation of
these data is provided in Materials and Methods and SI Appendix.
To demonstrate the robustness of FLI-Net, training and valida-

tion were performed over 30 times with randomly initialized
training/validation partitions in the case of a NIR-trained network
as this is the most challenging case in quantitative lifetime studies
due to the short lifetimes of NIR fluorophores. The plotted average
of 30 validation mean-squared error (MSE) curves trained over 150
epochs with corresponding SD bounds for all 3 output branches is
provided in Fig. 1B and illustrates the DNN’s excellent conver-
gence stability. To evaluate whether the feature extraction of the
shared branch was robust and effective, the output of the shared
branch’s final activation layer was registered during the feed-
through of 5,000 newly simulated TPSF data voxels (not used in
training or validation). These high-dimension features were flat-
tened and projected to a 3D feature space via t-distributed sto-
chastic neighbor embedding (t-SNE) (37). Their display as a scatter

plot is provided in Fig. 1C, with each assigned color corresponding
to the ground-truth (GT) value of mean lifetime (τM , calculated
via Eq. 2):

τM =ARτ1 + ð1−ARÞτ2. [2]

The continuous gradient observed in the 3D plot of the t-SNE
values versus the simulated mean lifetimes (τm ∈ ½0.2, 0.65� ns)
indicates an efficient and sensitive feature extraction for
lifetime-based parameter estimation. Beyond feature extraction,
we provide also the summary of the quantitative accuracy of the
network in estimating the 3 abovementioned lifetime-based pa-
rameters (τ1, τ2,AR). The accuracy of these results was evaluated
via the structural similarity index (SSIM) between the simulated
and estimated values (SSIM = 1 indicating perfect one-to-one
concordance). The SSIMs are also reported for 3 ranges of max-
imum photon counts (i.e., p.c.good ∈ [250 to 500]; p.c.challenging ∈
[100 to 250]; p.c.low ∈ [25,100]) as FLI imaging in biomedical
applications is notoriously a photon-starved application. In all 3
cases, FLI-Net (Fig. 1D) significantly outperforms the classical
least-squares fitting (LSF) (Fig. 1E) method, which as expected
demonstrates worsening performances at very low photon
counts (SSIM= 0.82). Note that although the network was
trained using only TPSF data possessing intensity values greater
than 500, it performs well for low photon-count levels as well
(even in the 25 to 100 range with a SSIM= 0.95 for the worse
case). To further highlight the accuracy and robustness of the
network, we provide in SI Appendix, Fig. S4 examples of spa-
tially resolved images of lifetime as estimated via FLI-Net and
LSF for different p.c. along with the GT. We limit ourselves to
τM and AR for simplicity. In all cases, FLI-Net predicted the
absolute τM with high accuracy (mean absolute error maximum
of «τM = 83± 62 ps in the case of low p.c.; SI Appendix, Fig. S4O)
whereas LSF predictions deviated significantly at low p.c.

Fig. 1. Illustration of the 3D-CNN FLI-Net structure and corresponding metrics. During the training phase, the input to the DNN (A) was a set of simulated
data voxels containing a TPSF at every nonzero value of a randomly chosen MNIST image. After a series of spatially independent 3D convolutions, the voxel
underwent a reshape (from 4D to 3D) and is subsequently branched into 3 separate series of fully convolutional down-sampling for simultaneous spatially
resolved quantification of 3 parameters, including short lifetime (τ1), long lifetime (τ2), and fractional amplitude of the short lifetime (AR). (B) The 30-MSE
validation curve average with corresponding SD (shaded) for each parameter. (C) t-SNE visualization obtained via the last activation map before the tri-
junction reconstruction, where each point represents a TPSF voxel assigned a randomized trio of lifetime and amplitude ratio values. (D and E) FLI-Net
performance (D) versus LSF (E) upon evaluation of simulated TPSF voxels over 3 ranges of maximum photon count (25 to 100, 100 to 250, and 250 to 500 p.c.).
Parameters of interest include τ1, τ2, AR, and mean lifetime (τM , Eq. 2).
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Further, the AR quantification via FLI-Net is in much higher
concordance with GT across all p.c. bounds in large contrast
with LSF (SI Appendix, Fig. S4).
Overall, these training and validating results establish that

FLI-Net can be efficiently and robustly trained via synthetic data
representing both mono- and biexponential decays (we provide
in SI Appendix, Fig. S5 an example of an alternative 2D-CNN
network). Moreover, as only in such synthetic datasets the life-
time parameters absolute ground truth are known, this is the
only available methodology to establish in an absolute fashion
the accuracy of FLI-Net prediction. In summary, FLI-Net out-
performs the classical LSF approach in estimating the 3 lifetime-
based parameters that are commonly employed in FLI bio-
medical imaging. To further establish the usefulness and unique
potential of FLI-Net, its performance was evaluated using ex-
perimental datasets after training with simulation data generated
through the workflow previously described.

FLIM. FLIM is the most widely used FLI application in bio-
medical imaging. For this study, we selected metabolic and
FRET imaging as they are some of the most challenging, yet
sought after, FLIM applications. First, the performance of FLI-
Net was evaluated by quantifying the metabolic status of live cells
as reported by NADH endogenous imaging. Second, FLI-Net’s
capacity to quantify ligand–receptor engagement via FLIM
FRET in the visible and NIR range was determined. Note that
all studies hereafter are conducted using experimental datasets
that have never been used in the training and validation of FLI-
Net. Additionally, even if in these applications complex fluores-
cence decays that may reflect 3- or 4-exponential behavior can be
encountered, still, it is customary in the field to use a biexponential
model to process them due to relatively low photon counts.
Metabolic imaging. Quantification of the fractional concentration
between free and protein-bound NADH provides important in-
formation regarding cellular metabolic state (38). Free and
protein-bound NADH possess different, yet overlapping, ab-
sorption and emission profiles (39). Since they differ significantly
in fluorescence lifetime, FLIM has been used extensively for free
vs. bound NADH quantification in vitro (38, 40, 41). The short-
lifetime component has been indicated to reflect free NADH,
while the long lifetime corresponds to bound NADH. Biexpo-
nential lifetime imaging allows for the calculation of the weighted
average of NADH short- and long-lifetime components, i.e., mean
fluorescence lifetime (τM), which has been shown to monitor
metabolic response in breast cancer cells (38, 41). First, confocal
FLIM data were collected from 4 human cell lines (MCF10A as a
noncancerous mammary epithelial cell line and the remaining
being cancer cell lines representing different types of breast can-
cer) using a Zeiss LSM 880 Airyscan NLO multiphoton confocal
microscope equipped with an HPM-100-40 high-speed hybrid
FLIM detector (GaAs 300 to 730 nm; Becker & Hickl) and a
Titanium:Sapphire laser (Ti:Sa) (excitation set at 730 nm; Cha-
meleon Ultra II, Coherent, Inc., 680 to 1,040 nm). These different
cell lines, MCF10A, AU565 (HER2 positive breast cancer), T47D
(estrogen receptor positive breast cancer), and MDA-MB-231
(triple-negative breast cancer), have been shown to exhibit
markedly different metabolic states, as reported by NADH τM
(41). Additionally, the cells were exposed to 2.5 mM of Na cyanide
(NaCN), which is a well-known inhibitor of many metabolic pro-
cesses leading to reduced NADH τM (41). FLIM acquisition was
performed prior to exposure and after 30-min incubation of live
cells with NaCN. The FLIM NADH τM images for each case are
provided in Fig. 2, both for FLI-Net and for SPCImage. A visual
inspection of these images shows that FLI-Net and SPCImage
provide strikingly similar results. The descriptive statistics of
NADH τM of SPCImage versus FLI-Net for each case are sum-
marized in Fig. 2 I–L. The excellent concordance between the
2 analytic frameworks is highlighted in Fig. 2K by very high

coefficients of determination (R2 ∈ [0.985]) and a low P value (P <
1e-5). Additionally, we provide the SSIM between FLI-Net and
SPCImage in Fig. 2L and SI Appendix, Fig. S6. The SSIM values
indicate an excellent spatial congruence between FLI-Net and
SPCImage in all cases, with the lowest measured value obtained
for MDA-MB-231 cells treated with NaCN (SSIM = 0.87).
Ligand–receptor engagement. FRET is widely used in fluorescence
microscopy to assay the proximity between fluorophore-labeled
proteins at the nanometer range (2 to 10 nm) (42–44). FLI
quantifies FRET occurrence by estimating the reduction of the
fluorescence lifetime of the donor fluorophore when in close
proximity to the acceptor fluorophores. When applied to
receptor–ligand systems, FRET occurs when donor-labeled and
acceptor-labeled ligands/antibodies bind to dimerized or cross-
linked receptors (42, 45, 46) Hence, FLI FRET acts as a direct
reporter of receptor engagement and internalization via the
measurement of the fraction of labeled-donor entity undergoing
binding to its respective receptor and subsequent endocytic in-
ternalization (13, 19, 47). Here, FLIM-FRET is performed by
quantifying the reduction in the donor τM associated with FRET
quenching (13, 47–49). Visible FLI FRET microscopy data were
collected using a Zeiss LSM 510 equipped with an HPM-100-40
high-speed hybrid FLIM detector (GaAS 300 to 730 nm; Becker &
Hickl) and a Ti:Sa laser (Chameleon) [apparatus, fluorescence
labeling, and data acquisition details are described elsewhere
(50)]. T47D human breast cancer cells were incubated with Tf-
Alexa Fluor 488 (Tf-AF488) and Tf-AF555 visible FRET pair
with a range of acceptor:donor (A:D) ratios from 0:1 to 2:1. As
the A:D ratio increases, it is expected that FRET occurrence
increases with the donor τM decreasing accordingly. The τMs for
each condition as estimated via FLI-Net are provided in Fig. 3,
Upper. In all cases, the τMs follow the decreasing trend expected
as the A:D ratio increases as seen in SI Appendix, Fig. S7. Both
FLI-Net and SPCImage analysis confirm this mechanistic be-
havior (further metrics and illustration provided in SI Appendix,
Figs. S7–S9). However, in such experimental settings, it is not
possible to know exactly what should be the true value of the τM
parameter. Importantly, during SPCImage processing flow, a few
parameters need to be user selected for optimal performances.
Such user-dependent parameters can lead to relatively different
τM estimations (see SI Appendix, Figs. S10 and S11 for exam-
ples). Hence, in such conditions we are limited to assess only
whether FLI-Net provides similar results to SPCImage. In this
regard, Fig. 3 C and D reports the respective distribution of es-
timated τMs. For the 4 A:D ratios tested, the mean-lifetime
distributions are in reasonably high agreement between FLI-
Net and SPCImage—with probability distribution maximum
values shifted by less than 150 ps downward compared to
SPCImage in the most different distributions. Furthermore, the
Bhattacharyya coefficient (BC) was computed to measure the
similarity of each paired probability distribution. As displayed in
Fig. 3E (further discussed in Materials and Methods), the BCs are
all very close to ≅1, indicating that FLI-Net and SPCImage
provide similar τM distributions for all cases. Additionally, we
computed the MSE to assess spatial congruency between the 2
postprocessing methods. As reported in Fig. 3F, the MSE values
are low, indicating a good pixel–pixel correspondence. Overall,
these results demonstrate that FLI-Net provides similar results
to SPCImage although without the potential bias induced by
user-defined parameters as in SPCImage.
Beyond the quantitative and spatial accuracy of FLI-Net as

demonstrated by its benchmarking against SPCImage, we com-
pared its computational speed versus SPCImage on the same
computational platform. The time required for analysis of each
TCSPC voxel, which possessed 256 time points (visible FLIM)
with a pixel resolution of 512 × 512, was just 2.5 s on average
using our 3D CNN compared to ≅45 s with SPCImage. It is
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important to note that one input parameter of importance to
SPCImage is the photon-count restrictions that lead to fitting
only a small subset of the pixels in the input voxel, whereas FLI-
Net processes the voxel’s entirety. Taking into account this em-
bedded constraint under SPCImage, FLI-Net is ≅30 times faster
than SPCImage per pixel processed (FLI-Net = 9.5e-3 ms per
pixel; SPCImage = 0.28 ms per pixel). Note also that we have not
focused herein on optimizing the computational efficiency of
FLI-Net, and we expect even further gains in future iterations.
Visible FLIM takes advantage of the relatively large lifetimes

of donor fluorophores in the visible range compared to the IRF
temporal spread. This facilitates fitting methodologies as the
IRF has minimal impact on the quantification accuracy. How-
ever, with the impetus of translating optical molecular imaging to
deep tissue imaging, great efforts have been deployed over the
last 2 decades to develop NIR dyes. Yet, NIR dyes are typically
characterized by shorter lifetimes that can be of the order of the
IRF full width at half-maximum (FWHM), rendering FLI
quantification far more challenging; for example, whereas Tf-
AF488 conjugates have a lifetime ≅2.5 ns, Tf-AF700 shows a
donor lifetime of 1 ns, which reduces to <300 ps when un-
dergoing FRET events in the presence of acceptor Tf-AF750.
NIR microscopy data collected using a Zeiss LSM 880 confocal

microscope equipped with a NIR FLIM detector (apparatus,
fluorescence labeling, and data acquisition details described
here) (51) were used to further test FLI-Net’s robustness during
in vitro NIR FLIM FRET analysis. T47D cells were incubated
with Tf-AF700 and Tf-AF750 NIR FRET pairs with a range of
A:D ratios from 0:1 to 2:1. For the NIR FRET analysis and
especially its in vivo applications, the parameter of interest is the
fractional amplitude AR that reports on the fraction of donor
undergoing FRET (FD% or AR) (42). In Fig. 4, Upper, the es-
timated FD% was determined using FLI-Net (the corresponding
SPCImage images are shown in SI Appendix, Fig. S12, along with
additional SSIM image-to-image quantification in SI Appendix,
Fig. S13). As expected, as the A:D ratios increase, the FD%
increases as well, as described previously (SI Appendix, Fig.
S14) (19, 47). Moreover, FLI-Net results, as in the previous
FLIM examples, are in good agreement both spatially and
quantitatively with SPCImage results as evidenced with BCs
close to ≅1 and very low MSE for all A:D ratios (Fig. 4 C and
D). Finally, FLI-Net is ≅30 times faster than SPCImage per
pixel processed (FLI-Net = 6.8e-3 ms per pixel; SPCImage =
0.21 ms per pixel). Even in the challenging case of NIR dyes
with short lifetimes, FLI-Net shows remarkable speed and good

Fig. 2. Visible FLIM microscopy of NADH. (A–H) Representative maps of NADH τM obtained with the commercial software SPCImage (A–D) and FLI-Net (E–H).
(I and J) Averaged NADH τM values obtained across all FLIM data using both techniques. Error bars are SD, n = 3. (K) Linear regression with corresponding 95%
confidence band (gray shading) of averaged NADH τM values from all cell lines pre- and postexposure to NaCN obtained via SPCImage and our DNN (slope =
1.01 (SE = 0.05); P < 1e-5; intercept = −6.9e-3 (SE = 4.2e-2); R2 = 0.985); n = 3. (L) SSIM measurements for all NADH τM images. NaCN-treated cells are notated
with an asterisk. Error bars are SD with n = 3. Further metrics of note (MSE; comparisons are different spatial binning, etc.) are included in SI Appendix, SI Text.
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precision in measuring FRET signal indicative of receptor en-
gagement in cancer cells.

MFLI
Another important application of FLI is to the imaging of tissues
at the macroscopic scale (MFLI). The applications hence range
from high-throughput in vitro imaging (52) to ex vivo (53) or
in vivo tissue imaging (54) for diagnostics, within the framework
of optical guided surgery (55), and preclinical studies (43). Par-
ticularly, there is great interest in employing NIR MFLI as in this
spectral window the background fluorescence is reduced, and
deep tissue imaging can be performed with high sensitivity. The
technology of choice to perform MFLI is gated ICCD as it
provides fast acquisition speeds over a large field of view. As a
tradeoff, MFLI does not provide the efficiency of TCSPC col-
lection and is characterized by IRF of the size of the gate
employed (typically 300 ps or above). Hence, quantification of
lifetime-based quantities can be very challenging. To demon-
strate the potential of FLI-Net for MFLI based on gated ICCD
(and hence its potential for wide-field FLI applications), its per-
formance was evaluated in 2 settings: multiwell plate imaging with
concentration-controlled mixtures of 2 NIR dye mixtures and
dynamic NIR-FRET in vivo imaging in live intact, small animals.
A series of MFLI data acquired from multiwell plates, each

containing a volumetric fraction of 2 fluorescent dyes prepared
as further described in Materials and Methods and SI Appendix,
Tables S2 and S3 and in ref. 19, were used as a highly sensitive
test of FLI-Net’s capability to quantitatively retrieve accurate
lifetimes and fractional amplitudes in controlled settings (rang-
ing from mono- to biexponential). Each TPSF was captured with

a time-gated, wide-field MFLI apparatus described in detail
elsewhere (50). Fig. 5 illustrates a sensitive comparison of FLI-
Net with an LSF approach implemented in MATLAB (further
described in Materials and Methods). For a one-to-one compar-
ison, the range of τ1 and τ2 values used for TPSF generation to
train the network was set to the bounds chosen for the LSF fit-
ting. The summary of the quantification of the 2 dye lifetimes
(τ1, τ2), as well as the τM associated with the different dye ratios,
for both FLI-Net and LSF is provided in Fig. 5 A and B for FLI-
Net and Fig. 5 E and F for LSF. As reported, the mean τM values
are in excellent agreement between LSF and FLI-Net. Similarly,
the trends exhibited for τM not only follow the expected trend-
line but also are in agreement between the 2 estimation
techniques. Note that in all cases, FLI-Net provides lifetime
distributions that are centered around a single value with a rel-
ative narrow spread conversely to LSF (Fig. 5 E and F). To
further highlight the mechanistic trend in τM as associated with
the series of mixtures of ATTO 740 and 1,1′,3,3,3′,3′-hexame-
thylindotricarbocyanine iodide (HITCI), we report in Fig. 5C the
FLI-Net predicted τM versus the variable volume fraction ν1 of
HITCI, ν1 = 0, 0.1, . . ., 0.9, 1 and an initial concentration ratio
μ = [HITCI]0/[A740]0 given in the key. Based on this approach,
as described in Materials and Methods and SI Appendix, SI Text,
it is possible to recover a value corresponding to a ratio of pa-
rameters inherent to the fluorescent species of both dyes used for
the mixture based on τM as described by the linear dependence
reported in SI Appendix, Figs. S15 and S16 (see ref. 19 for more
details). Additionally, we provide in SI Appendix, Fig. S17 the
results of τM estimation for AF700 in a different buffer mixture
of PBS and ethanol (SI Appendix, Table S4 and in agreement

Fig. 3. Visible FLIM microscopy data. (Top) T47D human breast cancer cells were incubated with different A:D ratios of Tf-AF488 (donor, D) and Tf-AF555
(acceptor, A) for 1 h. FLI signal is reduced due to the occurrence of FRET when Tf-AF488 and Tf-AF555 bind to their respective receptor at the plasma
membrane as well as during subsequent internalization of the receptor–ligand complexes. Shown are representative τM maps obtained via FLI-Net using T47D
cells containing Tf-AF488 (A:D = 0:1; negative control) or different donor:acceptor ratios of Tf-AF488 and Tf-AF555 (0.5:1, 1:1, and 2:1). (A and B) Repre-
sentative ROI comparison between FLI-Net (A) and SPCImage (B). (Bottom) (C and D) Distribution histograms of τM obtained via FLI-Net compared to
SPCImage. (E and F) Bhattacharyya coefficient and MSE were calculated for whole images at each A:D ratio. Error bars are SD with n = 3. Further metrics of
note are included in SI Appendix, SI Text (SI Appendix, Figs. S7–S9).
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with results in ref. 19). Such experiments demonstrate the sta-
bility of FLI-Net predictions over numerous consecutive mea-
surements but also its ability to monitor dynamical MFLI events
with accuracy even in the case of expected monolifetimes (SI
Appendix, Tables S5 and S6 and Fig. S18).

In Vivo Dynamical Lifetime-Based Imaging. To demonstrate the
applicability of FLI-Net in a dynamic setting, we performed
in vivo NIR FRET imaging in live and intact small animals. As
demonstrated in previous studies (47), the occurrence of FRET
reports on the binding of receptor–ligand complexes (target
engagement) noninvasively using the Tf-Tf receptor (TfR) sys-
tem. The NIR-Tf probes label the liver, as a major site of iron
homeostasis regulation displaying higher levels of TfR expres-
sion. In contrast, the urinary bladder is labeled via its role as an
excretion organ due to the accumulation of free dye or small
labeled peptides as degradation products (13). A total of 170
MFLI data were acquired over a 2-h time span. Each frame
consisted of 256-pixel × 320-pixel × 160 time gates. An exper-
iment with a delayed injection of the acceptor compared to the
donor at A:D ratio of 2:1 was performed (donor, Tf-AF700;
and acceptor, Tf-AF750) as well as a FRET negative control in
which only donor was injected (A:D = 0:1; SI Appendix, Fig.
S19 provided for further clarity). Fig. 6 A and B reports on the
spatially resolved FRET donor fraction (FD% or AR) as esti-
mated via FLI-Net for a few frames and for the above-
mentioned 2 conditions. In all cases, the 2 main organs of
interest, the liver and the bladder, are well resolved. Addi-
tionally, we provide the time trace of FD% over the whole 170
frames as computed for the liver and bladder regions of interest
(ROIs), both for FLI-Net and for LSF, in Fig. 6 C–F. As
expected, the FD% is reduced throughout the imaging period

in the bladder as no TfR-Tf binding occurs, while the FD%
increases sharply in the liver at A:D ratio of 2:1 due to
abundant TfR expression and therefore increased NIR-
labeled Tf binding and internalization in this organ. Such
results are in accordance with our previous studies using the
same biological system (47). Of importance, FLI-Net pro-
vided a smoother mean FD% estimate over the organs with
lower average SD ðσ= ðσliver, σbladderÞÞ across all frames
ðLSF: ½σFRET = ð0.066, 0.082Þ, σcontrol = ð0.058, 0.085Þ�Þ (FLI-Net:
½σFRET = ð0.037, 0.041Þ, σcontrol = ð0.032, 0.036Þ�Þ. Additionally, at
the onset of the experiments, at which time point only the donor
has been injected in the animal and hence no FRET can occur, the
baselines of FD% in the liver and bladder are similar (as expected)
as estimated using FLI-Net conversely to the LSF estimates. Fi-
nally, FLI-Net demonstrated these remarkable performances at
speeds readily employable for real-time use, ≅80 ms per voxel
versus ≅7.5 × 106 ms per voxel with assistance of a binary mask for
the LSF.

Discussion
FLI imaging is a popular technique that enables accurate probe
quantification in biological tissues, revealing unique informa-
tion of great value for the biomedical community. To derive the
lifetime-based quantities, model-based methodologies or graphical
approaches have been proposed but they rely on relatively com-
plex inverse formulation, may necessitate calibration samples,
and/or may need to be adapted to the application investigated
and instrumentation employed. In contrast, DL methodologies
can deliver fast and parameter-free processing performances.
Our proposed 3D CNN architecture, as well as training meth-
odology, offers the potential of a generalized tool for fast, pa-
rameter/fit- free, quantitative FLI imaging for a wide range of

Fig. 4. NIR TCSPC FLIM microscopy data. (Top) Representative FRET FD% maps obtained via FLI-Net using T47D cells containing Tf-AF700 (A:D = 0:1) or A:D
ratios of Tf-AF700 and Tf-AF750 (0.5:1, 1:1, and 2:1). Cells were treated similarly to those in Fig. 3 using differently labeled Tf molecules. (A and B) Example ROI
comparison between FLI-Net (A) and SPCImage (B). (Bottom) (C and D) FD% distribution overlays for both techniques. (E and F) Bhattacharyya coefficient and
MSE were calculated for whole images at each A:D ratio. Error bars are SD with n = 3. Further metrics of note are included in SI Appendix, SI Text (SI Appendix,
Figs. S12–S14).
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applications and technologies. Especially, our methodology is
centered on model-based learning that is efficient, robust, and
accurate. As the training set corresponds to spatially resolved
and time-resolved synthetic data, one can generate datasets
over large lifetime ranges, such as in visible FLIM microscopy,
and replicate typical signal-to-noise ratios encountered in bi-
ological application by controlling the photon-count levels.
Such an approach avoids the need to acquire massive training
datasets experimentally and can encompass numerous applications
and/or technologies.
In this work, this model-based approach was leveraged to train

FLI-Net based on typical experiments encountered in the field,
including FLIM in the NIR and visible spectra and NIR MFLI
wide-field in vivo imaging. For each case, the network was trained
over a large range of potential parameters that were beyond the
one expected in the designed experiments. Based on the in silico
study, in which ground-truth parameters can be ascertained, we
can establish that FLI-Net was accurate and robust in estimating
lifetime-based parameters in the cases of both mono- and biex-
ponential decays without setting any parameters. For instance, in
the case of extreme fractional amplitudes (AR ∈ [0 to 0.05] or AR∈
[0.95 to 1]), FLI-Net exhibited small absolute errors in lifetime
estimation conversely to LSF (SI Appendix, Fig. S18). However, as
no ground truth can be obtained in such experimental settings,
when benchmarking it against commonly employed fitting soft-
ware, e.g., SPCImage, we could report and comment only on
expected values and mechanistic trends. In all experiments, FLI-
Net provided quantities that were in agreement with the expected
biological outcomes. For instance, FLI-Net was able to clearly
discriminate between noncancerous and cancerous cells, as well as
between different types of cancer cells (AU565 and T47D vs.
MDA-MB-231). In contrast to SPCImage, FLI-Net reported on a
significant difference between the τM of untreated and Na
cyanide-treated cells across all cell types (Fig. 2I). In the case of
the cell line AU565, SPCImage quantified an increase in metabolic

status after Na cyanide exposure conversely to FLI-Net and the
expected effect of this metabolic inhibitor. Such results can
further highlight the benefit of methodologies that do not require
intrinsic calibration or user-defined parameter settings. To further
emphasize this point, we provide an illustration of how a slight
variation in the chosen tau initialization (SI Appendix, Fig. S10) or
the choice of pixel used in the lifetime calibration routine (SI
Appendix, Fig. S11) will alter the resulting distributions via
SPCImage analysis. Therefore, since FLI-Net considers all pixels
in the image without a priori assumptions, the wider ranges for
FD% determined for both visible and NIR FLIM FRET when
using FLI-Net may indicate cell environment effects on FLI
measurements, which may be overlooked when using user-biased
approaches that include ROI or pixel selections.
Such findings in the microscopic settings are also confirmed in

the preclinical studies in which the FRET FD% prior to the
delayed injection of the acceptor was in accordance with ex-
pectation for FLI-Net but overestimated when using LSF in the
case of the liver. Moreover, it is important to note that FLI
methodologies are well known to perform poorly in the cases of
low p.c. This was also a fundamental limitation in a previous
study proposing to use a basic artificial neural network (ANN),
ANN-FLIM (44) that was not able to retrieve the lifetime-based
parameters in all cases, especially with low p.c. Conversely, FLI-
Net produced a robust estimate in such conditions as reported in
the in silico study (Fig. 1D and SI Appendix, Fig. S4) and in an
experimental study in which various concentrations and laser
illumination powers were employed (SI Appendix, Fig. S20 with
in silico equivalent in SI Appendix, Fig. S21). Such low p.c.
(p.c.low ∈ [25,100]) are far below the ones typically reported for
the reliable analysis of multiexponential decays (56–59) but not
uncommon in biological applications. In such cases, it is customary
to employ relatively large spatial binning to enable robust lifetime
imaging at the cost of a decrease in spatial resolution. Indeed,
herein, to obtain robust quantification via SPCImage, relatively

Fig. 5. Comparison of FLI-Net with LSF using MFLI of NIR dyes possessing a subnanosecond lifetime. (A and B) Mean-lifetime values obtained through MFLI of
6 dye mixtures (D) containing various volumetric fractions of 2 NIR dyes: HITCI and ATTO 740 in PBS buffer—both of which are excited at 740 nm and emit
around 770 nm (further details given in SI Appendix) (19). Each of the 6 mixtures given corresponds to a differing initial volumetric fraction of the 2 fluo-
rescent species used (μ = HITCI0/ATTO0) and thus a differing mechanistic trend. The values obtained from the DNN (A and C) illustrate a similar τM trend to that
of the least-squares fit (B) but possess a histogram distribution that is significantly more centralized for both τ1 (E) and τ2 (F). Concentrations and ratios as well
as fluorescent dye volumes used for preparation of each well-plate dataset are described in SI Appendix, Tables S2 and S3.
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large binning (SI Appendix, Fig. S22) was required whereas
FLI-Net performs well at low levels of spatial binning (SI
Appendix, Fig. S23).
Beyond enabling quantitative FLI imaging requiring user pa-

rameter input, a distinct advantage of FLI-Net, similar to the phasor
approach (19), is its ability to estimate the lifetime-based parame-
ters for a whole image at once. This is a step toward enabling the
application of FLI to monitor a dynamical process and/or for clin-
ical applications. Monitoring such a dynamical process with accu-
racy was demonstrated both in vitro and in vivo. Indeed, FLI-Net
can process live animal MFLI quantification at speeds necessary for
real-time application (≅80 ms per voxel). Hence, DL-based ap-
proaches such as the 3D-CNN presented are well positioned to
profoundly impact clinical applications such as fluorescence-guided
surgery or preclinical high-throughput drug screening experiments.
In this context, FLI is expected to play a major role either by pro-
viding unique contrast mechanisms such as in pH-transistor-like
probes (55) or by improving sensitivity for current clinically ap-
proved dyes (43). However, to date, wide-field FLI imaging for-
mation has not been attainable at a speed relevant to current
clinical practice, but perhaps FLI-Net can greatly assist in over-
coming this important barrier for clinical translation.
Still, our current implementation and methodology suffer

from a few shortcomings. First, as for any DL approach, the
computational time to create the model-based synthetic datasets
and to train the network does not allow us to produce a newly
trained network on the fly. Herein, the time required to generate
10,000 TPSF voxels and subsequently train the CNN for 500
epochs was on average, 4.5 h (1 h and 3.5 h, respectively). Hence,
if some experimental parameters are outside the range of the
training set, a few hours can be necessary to obtain an appro-
priate trained network. Although, as demonstrated herein, FLI-

Net can be trained over a wide parameter space such that ex-
periments with different fluorophores and settings, i.e., in the
metabolic and visible FRET imaging, can still be processed using
the same trained network. Hence, we envision that a few single-
trained networks, let us say for visible FLIM (Figs. 2 and 3) or
NIR MFLI (Fig. 6 and SI Appendix, Figs. S17, S20, S24, and
S25B), could be made available for the user to select the proper
one. Additionally, the user could still have access to current tools
including fitting or phasor approach for validation. Note also
that the computational times reported herein are for the gen-
eration and training ab initio. Transfer learning of one trained
network to another should reduce significantly the required
training time. However, it is still possible that experimental data
could contain values outside the range of the training set. We
provide in SI Appendix, Fig. S25 such a case in which a MFLI-
FRET well-plate sample was processed using FLI-Net trained
with data possessing lifetime bounds largely outside of the known
values. In such a case, FLI-Net reported biased quantification of
lifetime but still provided the expected trend in concordance with
LSF in which the parameter space was bounded to the same
values used during training.
Beyond the topical application of fit-free FLI, the overall ar-

chitecture of FLI-Net and the associated training methodology
have potential for application across a myriad of biomedical
imaging techniques that currently utilize a least-squares model-
based fit for parameter extraction. It is common for many of
these techniques to cite speed as a main hurdle they have yet to
overcome for successful adoption into the clinical or commercial
realm. We believe that this work provides ample supporting in-
formation and a robust proof of concept for similar adaptation
and implementation in projects regarding analytic optimization
across the field.

Fig. 6. Dynamical MFLI FRET performed over a 2-h time span in live intact mice. (A and B) Four equally spaced (in-time) MFLI-FRET image overlays obtained
from 2 mice: tail-vein injected Tf-AF700 (donor-only control), control (A); and tail-vain injected Tf-AF700 (donor) followed 20 min later by injection of
Tf-AF750 (acceptor), FRET induced (B). Imaging was performed over a time span of ∼2 h after Tf-AF700 injection (further detailed in SI Appendix, SI Text and
Fig. S19. (C–F) comparison of LSF versus FLI-Net results for FD% (∝ Tf-TfR engagement). The shaded region associated with each curve corresponds to the SD of
all values obtained for both the liver and urinary bladder at each time point. The computation time required for the LSF was >2 h using only the masked regions
(liver and urinary bladder), whereas FLI-Net produced all ∼170 parameter maps, using the entire 256- × 320-pixel acquisition, in <14 s (∼80 ms per voxel).
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Materials and Methods
FLI-Net Architecture and Training Methodology. The FLI-Net architecture con-
sists of 2 main parts: 1) a shared branch focused on spatially independent
temporal feature extraction and2) a subsequent 3-junction split for independent
reconstruction of τ1, τ2, and AR images simultaneously. Within the shared
branch, spatially independent convolutions along time (illustrated in SI Ap-
pendix, Fig. S1 as the blue rectangular prism with kernel size of (1 × 1× 10))
were set as the network’s first layer to maximize TPSF feature extraction. A
corresponding stride of k = (1,1,5), used initially to reduce parameter count and
increase computational speed, resulted in no observable decrease in perfor-
mance. A residual block, possessing a kernel size of (1 × 1 × 5), followed im-
mediately afterward to further extract time-domain information.

To ultimately obtain image reconstruction of size (x × y) via a sequence of
down-sampling, a transformation from 4D to 3D was required. Thus, after
the 3D-residual block (output of x × y × n ×50) the tensor was reshaped to
dimension (x × y × (n × 50)), where n corresponds to a scalar value dependent
on the number of TPSF time points as well as the chosen network hyper-
parameters. This value can be determined via the expressions

P =
FL0
2

ðnTP%SÞ [3]

n= ððnTP − FL0 + PÞ=S+ 1Þ, [4]

where nTP , P, FL0, and S denote the number of time points, padding
(obtained through Eq. 3), filter length along the temporal direction of the
first 3D-convolutional layer (length of 10 in this study), and the corre-
sponding stride value used in the first convolutional layer (value of 5 in this
study), respectively. After this transformation, a convolutional layer of size
(1 × 1) possessing 256 filters along with a subsequent residual block couplet
possessing size (1 × 1) was employed before the trireconstruction junction.
The (1 × 1) size of these 2D convolutional filters proved crucial in main-
taining spatially independent feature extraction.

FLI-Net was written and trained using the machine-learning library Keras
(60) with Tensorflow (61) backend in python. A total of 10,000 TPSFS voxels
were used during training (8,000) and validation (2,000), along with a batch
size dependent on the target input length along time (32 for NIR, 20 for
visible). MSE was set as the loss function for each branch. The RMSprop (62)
optimizer was used with an initial learning rate set to 1e-6. The network was
normally trained for 250 epochs using a NVIDIA TITAN Xp GPU. This training
time varied slightly depending on TPSF length, ranging between 50 s and
80 s per epoch (for voxels possessing 160 and 256 time points, respectively).

Generation of the Simulation Data. For every training sample, an MNIST (63)
binary image was chosen at random and every nonzero pixel was assigned a
value of intensity (I), short lifetime (τ1), long lifetime (τ2), and fractional
amplitude (AR) (SI Appendix, Fig. S2A). These values at each pixel, along with
a randomly selected IRF (an example of which is given in SI Appendix, Fig.
S2B as the pink dashed line), were subsequently used in the generation of
each TPSF ðΓðtÞÞ via Eq. 1 discussed previously (FLI-Net Architecture,
Training, and Validation). Further information can be found in SI Appendix
and example MATLAB script in the GitHub repository (64).

Each TPSF was normalized to a maximum intensity value of one in the
last step.

Preprocessing of Gated-ICCD Data. It is common for raw fluorescence time
decay data to be represented initially at each time point using a separate TIFF
image. Concatenation of these along the temporal axis along with a sub-
sequent removal of pixels possessing maximum photon counts of less than
250 was performed before the use of a Savitzky–Golay filter (65) (length 5,
third order) The effect of dark noise was removed via subtraction with the
mean value of time points 1 to 10 (before the IRF begins ascent). Afterward,
each value was normalized to one by division with its maximum value.

Use of the Savitzky–Golay filter or a filter that preserves the slope of the
TPSF’s ascent while also having no broadening effect on the curve (as is the
case with Gaussian or moving average filters) was essential for analysis of
the mouse data given FLI-Net sensitivity along time. SI Appendix, Fig. S5
further illustrates this reasoning.

Preprocessing of TCSPC Microscopy Data. Given that the TCSPC microscopy
data possessed significantly lower photon counts spatially relative to MFLI,
local neighborhood binning was employed. The SPCImage software’s
preprocessing technique involves performing this binning, along with
discounting any pixels possessing a maximum photon count below a spe-
cific threshold, at every pixel before fitting (32). This processing sequence

was replicated for FLI-Net datasets. A maximum photon count threshold
was placed initially (normally at 3 or 4), directly followed by a local
neighborhood binning (7 × 7 kernel). Unlike with the processing of the
gated-ICCD data, a Savitzky–Golay filter was not employed prior to
FLIM analysis.

NADH FLIM In Vitro. All cell lines were obtained from ATCC and cultured in
respective media at 37 °C and 5% CO2. T47D and MDA-MB231 cells were
grown in DMEM (Life Technologies) supplemented with 10% FBS (ATCC),
4mM L-glutamine (Life Technologies), and 10mM Hepes (Sigma). AU565
cells were cultured in RPMI medium (Life Technologies) supplemented with
10% FBS and 10 mM Hepes. MCF10A cells were cultured in DMEM/F12 me-
dium (Life Technologies) supplemented with 5% horse serum (Life Tech-
nologies), 20 ng/mL EGF (Peprotech), 0.5 mg/mL hydrocortisone (Sigma),
10 μg/mL bovine insulin (Sigma), 100 ng/mL cholera toxin (Sigma), and 50 units/mL
penicillin per 50 μg/mL streptomycin (Life Technologies). For the imaging
experiment, the cells were plated on MatTec 35-mm glass bottom plates at
400,000 cells per plate, cultured overnight in corresponding phenol red-free
complete medium, and imaged in the same medium. In parallel, cells were
incubated for 30 min with 2.5 mM NaCN in complete medium for metabolic
inhibition. The FLIM imaging of NADH autofluorescence emission was per-
formed using the Becker & Hickl HPM-100-40 detector which was attached
to the NDD port on the LSM 880 using a Zeiss T-adapter that contained a
680-nm SP blocking filter (Semrock FF01-680-/SP-25 blocking edge multi-
photon short-pass filter) followed by a 440/40 BP (Semrock FF01-440/40-25
single-band pass filter) at a spectral range of 420 to 460 nm. Excitation was
730 nm. The pixel dwell time was 2.58 μs and the voxel size was 512 × 512
pixels. The emission was collected for 60 s.

Visible FLIM-FRET In Vitro. T47D cells were plated on MatTec 35-mm glass
bottom plates as described above and cultured overnight. After that cells
were washed with HBSS buffer and incubated for 30 min in DHB imaging
medium (phenol red-free DMEM, 5 mg/mL BSA [Sigma], 4 mM L-glutamine,
20 mM Hepes [Sigma], pH 7.4) to deplete native transferrin followed by 1-h
uptake of holo (iron-loaded) Tf-AF488 and Tf-AF555 (Life Technologies) with
various acceptor:donor ratios in DHB solution, keeping the Tf-AF488 con-
centration of 20 μg/mL constant. The uptake was terminated by washing
with phosphate-buffered saline and fixing in 4% paraformaldehyde. The
images were acquired on a Zeiss LSM 510 equipped with a FLIM detector as
described previously (66).

NIR FLIM-FRET In Vitro. Human holo Tf (Sigma) was conjugated to Alexa Fluor
700 or Alexa Fluor 750 (Life Technologies) through monoreactive N-
hydroxysuccinimide ester to lysine residues in the presence of 100 mM Na
bicarbonate, pH 8.3, according to manufacturer’s instructions. T47D cells
were processed for Tf uptake in the same manner as described above. NIR
FLIM FRET was performed on a Zeiss LSM 880 Airyscan NLO multiphoton
confocal microscope using an HPM-100-40 high-speed hybrid FLIM detector
(GaAs 300 to 730 nm; Becker & Hickl) and a Ti:Sa laser (680 to 1,040 nm with
excitation set at 730 nm; Chameleon Ultra II, Coherent, Inc.). The Ti:Sa laser
was used in conventional one-photon excitation mode. A Semrock FF01-716/
40 bandpass filter and a FF01-715/LP blocking edge short-pass filter were
inserted in the beamsplitter assembly to detect the emission from Alexa 700
and to block scattered light, respectively. The 80/20 beamsplitter in the in-
ternal beamsplitter wheel in the LSM 880 was used to direct the 690-nm
excitation light to the sample and to pass the emission fluorescence to the
FLIM detector.

NIR MFLI Well-Plate Series. To test the sensitivity of FLI-Net for extracting
biexponential parameters, we mixed 2 NIR dyes, ATTO740 (A740, 91394-1MG-F;
Sigma-Aldrich) and HITCI (252034-100MG; Sigma-Aldrich) initially prepared in
PBS at various initial concentrations (SI Appendix, Table S2). For each con-
centration pair, different volumes of both dyes were mixed to obtain a total
volume of 300 μL with volume fractions ranging from 0 to 100% (10% steps;
SI Appendix, Table S3).

Dynamic NIR MFLI-FRET In Vivo. In these experiments, the dynamics of FRET
were observed by injecting Tf probes labeled with donor and acceptor at
different time points. For all experiments, athymic nude female mice (Charles
River) were first anesthetized with isoflurane (EZ-SA800 System; E-Z Anes-
thesia), placed on the imaging stage, and fixed to the stagewith surgical tape
(3 M Micropore) to prevent motion. A warm air blower (Bair Hugger 50500;
3 M Corporation) was applied to maintain body temperature. The animals
were monitored for respiratory rate, pain reflex, and discomfort. The mice
were imaged with the time-gated imaging system in the reflectance

24028 | www.pnas.org/cgi/doi/10.1073/pnas.1912707116 Smith et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
27

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912707116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1912707116


www.manaraa.com

geometry, with adaptive grayscale illumination to ensure the appropriate
dynamic range between the regions of interest. In particular, excitation in-
tensity had to be reduced in the urinary bladder due to accumulation of NIR-
labeled Tf over time. Two hours after tail injection of 20 μg of Tf-AF700, the
FRET-induced mouse was imaged for ∼15 min before retro-orbital injection
with 40 μg of Tf-AF750 (A:D ratio 2:1). Imaging was continued for another
105 min. For the negative control mouse (0:1), no further probe was injected
throughout the imaging session. SI Appendix, Fig. S19 is provided for further
clarity. The time-resolved MFLI-FRET imaging system used in this study is
described in detail elsewhere (50).

LSF Analysis. The LSF implementation chosen for use was based around
MATLAB’s function fmincon(). The lower and upper bounds of both lifetime
values were for all cases chosen to match the bounds used in generation of
the TPSF data voxels used in training our model (SI Appendix, Table S1). The
exceptions to this include the use of monoexponential fitting during analysis
of one NIR MFLI experiment illustrated below (SI Appendix, Fig. S17).

Bhattacharyya Coefficient. Given that every in vitro dataset possessed a dis-
tribution of values postanalysis, the addition of a metric for comparison of
these probability distributions between FLI-Net output and SPCImage’s was
included. To measure the degree of overlap between distributions obtained

through both techniques, the Bhattacharyya coefficient was employed. Given
2 continuous probability distributions M(x) and N(x), the Bhattacharyya co-
efficient is calculated as

BCðM,NÞ =
Z∞

−∞

ffiffiffiffiffiffiffiffiffiffiffi
MðxÞ

p ffiffiffiffiffiffiffiffiffiffi
NðxÞ

p
dx, [5]

where, when M(x) = N(x), or the probability distributions overlap perfectly,
the Bhattacharyya coefficient is equal to 1. The metric is explained in further
depth elsewhere (67).

Data Availability. All data discussed in this paper are available to readers. We
have provided a public GitHub repository (64) for dissemination of relevant
data and MATLAB/python script.
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